
Discovery of Unclustered Fungal Indole Diterpene Biosynthetic 
Pathways through Combinatorial Pathway Reassembly in 
Engineered Yeast

Mancheng Tang1, Hsiao-Ching Lin1, Dehai Li1,4, Yi Zou1, Jian Li3, Wei Xu1, Ralph A. 
Cacho1, Maureen E. Hillenmeyer3, Neil K. Garg2, and Yi Tang1,2,*

1Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 
CA, USA

2Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA

3Stanford Genome Technology Center, Palo Alto, CA, USA

4Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and 
Pharmacy, Ocean University of China, Qingdao, P. R. China

Abstract

The structural diversity and biological activities of fungal indole diterpenes (IDTs) are generated 

in large part by the IDT cyclases (IDTCs). Identifying different IDTCs from IDT biosynthetic 

pathway is therefore important towards understanding how these enzymes introduce chemical 

diversity from a common linear precursor. However, IDTCs involved in the cyclization of the 

well-known aflavinine subgroup of IDTs have not been discovered. Here using Saccharomyces 

cerevisiae as a heterologous host and a phylogenetically-guided enzyme mining approach, we 

combinatorially assembled IDT biosynthetic pathways using IDTCs homologs identified from 

different fungal hosts. We identified the genetically standalone IDTCs involved in the cyclization 

of aflavine and anominine, and produced new IDTs not previously isolated. The cyclization 

mechanisms of the new IDTCs were proposed based on the yeast reconstitution results. Our 

studies demonstrate heterologous pathway assembly is a useful tool in the reconstitution of 

unclustered biosynthetic pathways.

The remarkable structural variations observed among natural products of the same 

biosynthetic origin arise from the catalytic activities of diversity-generating enzymes.1 

These enzymes typically function downstream of conserved core enzymes that provide a 

common starting point for structural decoration. Identifying and reconstituting the activities 

of the diversity-generating enzymes can enable engineering of pathway towards production 

of compounds that are not observed in nature. Current approaches for natural product 

enzyme discovery rely heavily on the clustering of biosynthetic genes in the host genome.2 
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This feature enables the systematic screening for the desired enzyme using genetic and 

biochemical methods. However, such strategy is ineffective when the key enzymes are 

encoded separately in the genome.3 As a result, unclustered enzyme candidates are 

frequently overlooked and remain difficult to identify. One emerging strategy to overcome 

this limitation is to perform comprehensive and unbiased genome-wide searches for genes 

through sequence similarity, prioritize the candidates through phylogenetic analysis, and 

screen for activities via combinatorial assembly of pathways in genetically robust 

heterologous hosts.4 With the advent of powerful synthetic biology tools and vast genome 

resources, this strategy can accelerate the mining of new diversity-generating, biosynthetic 

enzymes.

To apply the heterologous pathway assembly strategy, we focused on the fungal indole 

diterpenes (IDTs) and the associated diversity generating enzyme IDT cyclases (IDTC). 

IDTs form a structurally diverse family of natural products with a wide spectrum of 

biological activities, including insecticidal, anti-MRSA, and blocking of ion channels, etc.5 

The structural complexity of IDTs has generated considerable total synthetic effort in recent 

years.6 Core enzymes in the pathway include GGPP synthase (GGPPS) that synthesize 

geranylgeranyl-PP (GGPP); geranylgeranyl transferase (GGT) that couples GGPP with 

indole-3-glycerol-phosphate to yield 3-geranylgeranyl-indole (GGI); and a regioselective 

flavin-dependent epoxidase that can produce the epoxide 1 (Figure 1).7 IDTCs from 

different pathways are proposed to cyclize 1 into at least two known large subgroups of 

IDTs via the common intermediate carbocation 2.7 IDTCs responsible for the formation of 

one subgroup of IDTs, which include paxilline,8 terpendole,9 lolitrem,10 penitrem,11 and 

aflatrem 4,12 have been discovered to be clustered with the core enzymes. On the other 

hand, IDTCs responsible for generating the other large subgroup with different diterpene 

cyclization and insecticidal profiles, as exemplified by aflavinine 513 and anominine 6,14 

have remained undiscovered to date. Moreover, since the cyclization mechanisms of 

forming the aflavinine family of compounds are significantly different from those in the 

paspaline family, it remains unclear whether additional enzymes may be involved to 

generate the cyclized diterpenoids. As a result, no mechanistic proposal for the formation of 

these compounds is available. Therefore, uncovering these cyclizations steps by 

heterologously reassembled pathways can afford insights into the origin of structural 

diversity among IDTs and opportunities for engineering additional derivatives.

We chose to first reassemble the core biosynthetic steps leading to 1 in Saccharomyces 

cerevisiae, a host that has been widely used for producing and engineering fungal nature 

products.15 Genes from the aflatrem biosynthetic pathway (Figure 1),12 including atmG, 

atmC, and atmM were each inserted into 2µ vectors under the control of ADH2 promoters 

and introduced into yeast. When AtmG (GGPPS) and AtmC (GGT) were coexpressed, 

instead of the expected product GGI, a new compound 7 (MW=405) was formed (Figure S1, 

trace i). During the isolation process, 7 rapidly converted to the diol 8 (0.2 mg/L, all values 

represent purified titers) (Figures S28–S32, Table S7), which suggested that 7 is GGI 

containing a C14-C15 epoxide (Figure 4A). Upon additional coexpresion of the epoxidase 

AtmM, we isolated two indole containing compounds (Figure 2B, trace i). The MW 405 

compound was verified to be the expected 1 (~ 1 mg/L) (Figures S4–S9, Table S3), while 
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the MW 421 compound 9 was readily converted to the tetrahydrofuran-containing 10 (0.3 

mg/L) (Figures S33–S37, Table S8), which can be formed through the hydrolytic epoxide 

opening of bis-epoxide 9. These results suggest that while yeast is able to produce 1, the 

terminal olefin is prone to oxidation by an endogenous yeast oxidase as seen in 7 and 9 in 

the absence of a dedicated downstream IDTC. Indeed, when AtmB was introduced into the 

above strain, the major product detected from the extract was paspaline 3 (1.5 mg/L) 

(Figures S10–S15, Table S4), while 9 was attenuated (Figure 2B, trace ii). We also detected 

small amounts of the precursor 11 (Figures S38–S43, Table S9), which is cyclized from the 

anti-Markovnikov addition product 21 to yield the 6-5-5-6-6 ring system (Figure 4B, path 

a). Oikawa et al previously showed homologs of AtmM and AtmB in the paxilline pathway 

can function iteratively to first form 11 from GGI, followed by additional epoxidation and 

cyclization to yield 3 (Figure 4B).7 Formation of 3 by the four Atm gene cassette in yeast 

demonstrates this host is suitable for producing IDTs and assaying IDTC functions.

To facilitate search for IDTCs that may be responsible for the cyclization of 5 and 6, as well 

as to assess the sequence space of this structure-diversifying enzyme, we constructed a 

phylogenetic tree using fungal AtmB homologs identified through Protein BLAST 

(Supporting Information). AtmB is an integral membrane enzyme with seven 

transmembrane helices as predicted by the TMHMM server. More than 140 homologous 

enzymes were identified which can be loosely grouped into five clades (Figure 3 and Figure 

S90). Clade 5 includes known IDTC AtmB,12 PaxB,7 and TerB,9 which are all involved in 

the formation of paspaline family of compounds. Clade 3 is represented by Pyr4,17 which is 

responsible for the cyclization of sesquiterpene units of meroterpenoids such as 

pyripyropene. None of the AtmB homologs found in the other clades have known functions. 

Some of the Clade 1 and Clade 2 homologs are neighbored by PKS genes and are also likely 

involved in cyclization of polyketide-terpene hybrid compounds. Numerous members of the 

large Clade 1 and the entire Clade 4 are standalone in their respective fungal genomes, and 

are not flanked by clear secondary metabolite biosynthetic genes.

Multiple AtmB homologs are found in Clades 4 and 5 from A. tubingenesis, A. niger, A. 

flavus, which have all been noted to produce IDTs belonging to both subgroups.5, 18, 19 For 

example, A. tubingenesis has been shown to produce the cis-decalin containing 6, while A. 

flavus has been noted to produce both 6 and the 3-vinyl indole 5.5, 19 The three AtmB 

homologs from A. tubingenesis (AtS2B and AtS5B1) and A. flavus (AfB), and their 

neighboring regions are shown in Figures 2A and S2. Both AtS2B and AfB are Clade 4, 

standalone IDTC homologs, while AtS5B1 is grouped in Clade 5 with AtmB. We reason 

that phylogenetically grouped IDTC should have similar cyclization regioselectivity, hence 

AtS5B1 is unlikely to be responsible for formation of 5 and 6. To test this hypothesis, we 

cloned atS5B1 into the yeast strain expressing AtmGCM. Both 3 (0.3 mg/L) and 11 were 

present in the extract, confirming that AtS5B1 functions similarly as AtmB (Figure 2B, trace 

iii). In addition, two new IDTs 12 (0.3 mg/L) (Figures S44–S49, Table S10) and 13 (1 

mg/L) (Figures S50–S55, Table S11) were detected and characterized. The ring-system 

present in 12 and 13, of which the indole ring is not fused to the cyclized terpene portion, is 

different from that observed in 11 and 3. Compound 13 serves as the precursor to several 

IDTs, such as emindole PA and emindole PB.20 Formation of the 3-alkyl indole 12 and 13 
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requires AtS5B1 to also catalyze a different mode of cyclization from 21, which involves 

1,2-methyl migration and concomitant ring expansion to yield the 6-6 bicyclic terpene 

moiety (Figure 4B, path b). Therefore, AtS5B1 can catalyze the formation of two different 

IDTs (3 and 13) from the shared 21.

We then turned to the closely related, standalone Clade 4 AtmB homologs AtS2B and AfB 

as IDTC candidates for the formation of 5 and 6. AtS2B and AfB were individually 

introduced into yeast strains that express AtmGCM. When AtS2B was expressed, two new 

IDT products with the same MW (405) were produced at equal levels (Figure 2C, trace i). 

NMR analysis and comparison to a synthetic standard confirmed one of the products to be 6 
(~1 mg/L) (Figures S22–S27, Table S6).6d The other compound was solved to be 10,23-

dihydro-24,25-dehydroaflavinine 14 (~1 mg/L) (Figures S56–S61, Table S12), which was 

also isolated from A. tubingenesis along with 6.19a Similarly, when AfB was coexpressed 

with AtmGCM, the yeast host produced numerous new compounds all exhibiting the same 

MW (Figure 2C, trace ii). The major product was characterized to be 5 (~1 mg/L) (Figures 

S16–S21, Table S5), while the minor products corresponded to 6, 14 and 15 (Figures S62–

S67, Table S13) (~0.1 mg/L each).

Therefore, phylogeny-guided pathway reassembly uncovered the standalone IDTCs AtS2B 

and AfB in Clade 4 are solely responsible for the alternative mode of terpene cyclization in 

the biosynthesis of IDTs. These results also confirmed 1, which is the product of AtmGCM 

(Figure 1) is also the substrate for the new IDTCs. This allows us to propose the cyclization 

steps as shown in Figure 4C. Instead of the intermediate 21 required for paspaline like IDTs, 

IDTCs such as AfB and AtS2B most likely catalyze a concerted 1,2-hydride shift and 1,2-

methyl shift of 2 to yield 22, in which the C20 methyl is migrated to C6 (Figure 4C). Attack 

of C2 on C11 carbocation then forms the cis-decalin carbocation 23. The cyclization steps 

leading to 5 and 6 then diverges. Deprotonation of the methyl group at C19 forms the exo-

methylene containing 6 (Figure 4C, path a), which can be further cyclized into the carbazole 

containing IDT such as tubingensin A.6d Alternatively, 23 can undergo 1,3-hydride shift to 

yield the indole-stabilized carbocation at C1 in 24 (Figure 4C, path b), which can be 

attacked by the terminal olefin to form 25. From there, different paths of hydride shift and 

deprotonation result in formation of 5 and related congeners such as 14 and 15 (Figure 4C). 

Based on the product profiles, AtS2B can catalyze both cyclization paths (Figure 4C, paths a 

and b) from 23, but is unable to promote the additional 1,2-hydride shift to form 26 (Figure 

4C, path d), which is required for the formation of 5. This observation is consistent with 5 
not being reported to be isolated from A. tubingenesis. In contrast, it appears AfB to be 

considerably more promiscuous than AtS2B and can singlehandedly catalyze all four paths 

of cyclization starting from 22 as shown in Figure 4. Interestingly, A. flavus has been 

reported to be producers of all the products derived from observed in the reconstituted yeast 

host (5, 6, 14 and 15)5, 19. Therefore, these results validate the reassembled pathways in 

yeast can capture the differences in cyclization mechanisms of the individual IDTCs, and 

can generate products that are consistent with chemotypes of the parent fungi.

To further demonstrate the yeast platform can be engineered to include additional 

downstream diversity generating enzymes, we examined P450 enzymes that may modify the 
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IDTs. Several Clade 5 IDTCs are grouped closely with AtS5B1, such as AKAW_02101 

from A. kawachii and ANI_1_1736094 from A. niger. Each of these gene clusters contains 

an additional P450 that show low sequence homology (<20%) to characterized P450s from 

the paxilline pathway (PaxP and PaxQ).7 To determine the role of the P450 and the IDTs 

produced from these clusters, we expressed AtmGC, AtS5M (homolog of AtmM), AtS5B1 

and the AtS5-P450 in the yeast strain RC01, which encodes a genome-integrated copy of the 

A. terreus cytochrome P450 reductase (CPR) gene. Three hydroxylated IDTs (16–18) 

related to 11–13 were detected and isolated (Figure S1, trace ii). Structural elucidation 

revealed that these compounds are oxidized at the terminal C17 methyl group (Figure 4D, 

Figures S68-S78 and Table S14–S15). The structure of 18 was inferred from that of the 

tetra-ol 19 (Figures S79-S83, Table S16), which readily formed during the purification of 

18. Therefore, AtS5-P450 can hydroxylate terminal methyl groups of cyclized IDTs. 

Unexpectedly, when AtS5-p450 was combinatorially coexpressed with AtmGCM and 

AtS2B, hydroxylation of the terminal methyl group in 6 led to 20a and 20b (Figure 4E, and 

Figure S1, trace iii) (Figures S84–S89, Table S17). The formation of these new IDT 

compounds showcases the potential for combining previously unclustered genes to yield 

novel products.

The combinatorial assembly of fungal IDT pathways in yeast guided by phylogenetic 

classification enabled us to identify new cyclases that would have otherwise been 

overlooked due to its unclustered nature. This approach can be applied towards the 

reconstruction of other structurally diverse natural product families. There is much to 

explore with just the IDTC homologs shown in Figure 3 and S90. More than 90% of the 

identified IDTC homologs have unknown functions. In addition to the possibility of 

producing novel IDT structures, we speculate that some of these homologs are responsible 

for the synthesis of indole sesquiterpenes, which has attracted significant attention both 

synthetically and biosynthetically recently,21 although no biosynthetic pathway is known. In 

addition, a number of these homologs with polyketide synthases nearby may lead to the 

synthesis of new meroterpenoid compounds. Each of these pathways generates diversity 

from a common intermediate, and is therefore amendable to study using the approach 

described in this work. An exhaustive characterization of the IDTC homologs and 

reassembly of the corresponding pathways will afford new and engineered natural products.
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Figure 1. 
The modular biosynthetic pathway of indole diterpenes. In the aflatrem biosynthetic gene 

cluster, AtmG, AtmC, AtmM and AtmB serve as GGPPS, GGT, epoxidase and IDTC, 

respectively.
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Figure 2. 
Reassemble IDT biosynthesis in yeast. A) The genetic loci containing IDTCs found in the 

genomes of A. tubingensis (At) and A. flavus (Af). atS2B and afB are standalone IDTCs. 

Annotation of genes can be found in Figure S2. B–C) HPLC analysis (λ=280 nm) of the 

extracts of yeast strains expressing different combinations of IDT biosynthetic enzymes 

from the B) paspaline-like and C) aflavinine–like pathways. For detailed MS and UV 

spectra of each peak, see Figure S3.
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Figure 3. 
Inferred phylogeny of selected IDTC and homologous proteins. Node support is shown as 

Bayesian posterior probabilities. The bacterial terpene cyclase XiaE16 is used as an 

outgroup. A comprehensive tree including all homologs from fungi is shown in Figure S90.
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Figure 4. 
IDTs produced from the engineered yeast host and the proposed mechanisms of cyclization 

by the cloned IDTCs
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